# The Structure of 2-p-Methoxyphenyl -3,4-dibenzyl-1,3,4-thiadiazolidine-5-thione, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}_{2}$ 

By Isabella L. Karle and J. Karle<br>U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.

(Received 20 October 1964)

A new heterocyclic synthesis produced a product believed to be


The crystal structure of the derivative where $\mathrm{R} \equiv$ benzyl and $\mathrm{R}^{\prime} \equiv$ methoxyphenyl confirmed the chemical structure. The thiadiazolidine ring is not planar and is rather asymmetric since the lengths of the two $\mathrm{C}-\mathrm{N}$ bonds are quite different from each other and the two $\mathrm{C}-\mathrm{S}$ bonds are also different from each other. The bonds to the N atom adjacent to $\mathrm{C}=\mathrm{S}$ lie in a plane, whereas the bonds to the N atom adjacent to CHR' form approximately tetrahedral angles. The space group is $P \overline{1}$ with $Z=2$ and the cell dimensions $a=7 \cdot 74, b=12 \cdot 07, c=12.32 \AA, \alpha=111^{\circ} 20^{\prime}, \beta=88^{\circ} 10^{\prime}, \gamma=100^{\circ} 43^{\prime}$.

The structure was solved by obtaining phases directly from the structure factor magnitudes by the symbolic addition procedure. A well resolved $E$-map revealed the positions of all the atoms.

The reaction of $N, N^{\prime}$-dialkylhydrazines with aromatic aldehydes and an unsaturated compound (a dipolarophile) represents a useful heterocyclic synthesis via 1,3dipolar cycloaddition (Huisgen, 1963):


If $\mathrm{CS}_{2}$ is used as the dipolarophile (Grashey, Huisgen, Sun \& Moriarty, 1964), the resulting product of 1,3dipolar cycloaddition was believed to be

although the possibility existed of addition of the dipolarophile in the reverse sense, that is,


The present X-ray investigation made on the following derivative,

confirms configuration (A). A brief note describing the conformation of the molecule and its relationship to nuclear magnetic resonance studies has been published (Karle, Karle \& Moriarty, 1964). Some very interesting structural features of the SCNNC ring will be described later in the paper.

## Experimental

Crystals of $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}_{2}$ were obtained from Prof. R. Moriarty of the Catholic University of America. They were colorless, transparent, elongated prisms of nearly square cross-section. Multiple-film, equi-inclination Weissenberg photographs were taken along the $a$ axis from the zero through the sixth layer with copper radiation. Visual estimates of the intensities were made by comparison with a calibrated film strip. A total of 3780 data were collected.

Cell dimensions were determined from precession photographs with the crystal mounted on the $a^{*}$ axis. The space group is triclinic (determined to be $P \overline{1}$ from statistical averages) and the unit-cell parameters are:

$$
\begin{array}{ll}
a=7.74 \pm 0.02 \AA & \alpha=111^{\circ} 20^{\prime} \pm 20^{\prime} \\
b=12 \cdot 07 \pm 0.03 & \beta=88^{\circ} 10^{\prime} \pm 20^{\prime} \\
c=12.32 \pm 0.03 & \gamma=100^{\circ} 43^{\prime} \pm 20^{\prime}
\end{array}
$$

with $Z=2$. The computed density is $1.282 \mathrm{~g} . \mathrm{cm}^{-3}$ while the density measured by flotation in mixed solvents was found to be $1.264 \mathrm{~g} . \mathrm{cm}^{-3}$. The measured density may be in some error since the crystals were dissolving in the solvents while measurements were being made.

The intensities were corrected for Lorentz and polarization factors and spot size; however, no correction was made for absorption. The data were adjusted to an absolute scale and structure factor magnitudes, $|F|$, and normalized structure factor magnitudes, $|E|$, were computed. For a triclinic space group,

$$
\begin{equation*}
E_{\mathrm{h}}^{2}=F_{\mathrm{h}}^{2} / \sum_{j=1}^{N} f_{j \mathrm{~h}}^{2} \tag{2}
\end{equation*}
$$

where $F$ is on an absolute scale and corrected for vibrational motion, $N$ is the number of atoms in the unit cell and $f_{j}$ is the atomic scattering factor for the $j$ th atom. Statistical averages for the normalized structure factors are listed in Table 1. The experimental values are compared with theoretical values computed for crystals with randomly distributed atoms. The statistical averages imply that the crystal is centrosymmetric and that its space group is therefore $P \overline{1}$.

Table 1. Statistical averages

|  |  |  | Non- |
| :--- | :---: | :---: | :---: |
|  | Experimental | Centrosymmetric | centrosymmetric |
| $\langle \| E\rangle$ | 0.806 | 0.798 | 0.886 |
| $\langle \| E^{2}-1\| \rangle$ | 0.918 | 0.968 | 0.736 |
| $\left.\left.\langle \| E\right\|^{2}\right\rangle$ | 1.001 | 1.000 | 1.000 |

The distribution of normalized structure factors is near the expected values for centrosymmetric crystals. These are shown in Table 2.

Table 2. Distribution of normalized structure factors

|  | $\|E\|>3$ | $\|E\|>2$ | $\|E\|>1$ |
| :--- | :--- | :--- | :--- |
| Expected | $0.3 \%$ | $5 \cdot 0 \%$ | $32.0 \%$ |
| Observed | 0.3 | 3.8 | 28.8 |

## Phase determination

The phases were determined directly from the intensities by the symbolic addition procedure (Karle \& Karle, 1963). In brief, the procedure consists of the use of the $\Sigma_{2}$ formula,

$$
\begin{equation*}
s E_{\mathrm{h}} \sim s \sum_{\mathbf{k}} E_{\mathrm{k}} E_{\mathrm{h}-\mathrm{k}}, \tag{3}
\end{equation*}
$$

where $s$ means 'sign of'. The sign of $E_{\mathrm{h}}$ is determined as a function of the known signs of $E_{\mathrm{k}}$ and $E_{\mathrm{h}-\mathrm{k}}$. Previous experience has shown that a very small number of phases need be known in order to obtain the phases for a sufficient number of reflections to solve the crystal structure. The basic set of phases used to implement equation (3)
consists of arbitrary phases (+ or - ) assigned to three reflections (in space group $P \overline{1}$ ) in order to fix the origin, plus a small number of other reflections whose phases are specified by an unknown symbol, $a, b, c$, etc., where each symbol has the value + or - . The initial set used in this determination is listed in Table 3.

Table 3. Assignment of three origin specifying reflections and six other reflections as a starting set for the application of $\Sigma_{2}$

| Sign | $h k l$ | $E$ |
| :---: | :--- | :---: |
| + | $0,5, I \overline{1}$ | $3 \cdot 32$ |
| + | 116 | $2 \cdot 84$ |
| + | $17 \overline{7}$ | $3 \cdot 22$ |
| $a$ | $2,10,4$ | $3 \cdot 00$ |
| $b$ | 084 | $3 \cdot 17$ |
| $c$ | 625 | $2 \cdot 41$ |
| $d$ | $2,4,10$ | $2 \cdot 87$ |
| $g$ | 190 | $2 \cdot 94$ |
| $h$ | 075 | $3 \cdot 66$ |

It should be emphasized that the initial set was selected on the basis that each reflection had a large $|E|$ value and that the reflections entered into many combinations among themselves applicable to the $\Sigma_{2}$ formula. The unknown symbols were not assigned all at once, but as needed to continue the $\Sigma_{2}$ procedure. Initially, only phases for those reflections with large $|E|$ magnitudes, usually those with $|E|>2 \cdot 0$, are determined in order to be assured that the indications from the $\Sigma_{2}$ formula are correct. The probability that the sign of $E_{\mathrm{h}}$ is plus is determined by the formula

$$
\begin{equation*}
P_{+}\left(E_{\mathbf{h}}\right)=\frac{1}{2}+\frac{1}{2} \tanh \frac{\sigma_{3}\left|E_{\mathbf{h}}\right| \sum E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}}{\sigma_{2}^{3 / 2}} \tag{4}
\end{equation*}
$$

where $\sigma_{n}=\sum_{j=1}^{N} Z_{j}^{n}, Z_{j}$ being the atomic number of the $j$ th atom in a cell containing $N$ atoms. After the phases of many of the reflections with large $|E|$ magnitudes are determined, the process is continued with reflections having somewhat smaller $|E|$ magnitudes.
As many pairs of $E_{\mathrm{k}} E_{\mathrm{h}-\mathrm{k}}$ as possible are used in the formula in order to determine the phase of each $E_{\mathrm{h}}$.* Although, in general, most of the contributors to $\Sigma_{2}$ will agree in sign, there will be occasional disagreements. Phases of a few reflections may be indeterminate because the indications from $\Sigma_{2}$ will be nearly equally divided between + and - . Very often relationships will occur among the letters used as unknown symbols. In this determination, for example, the relationships $a \equiv c g, a b \equiv b c g$, and $a c \equiv g$ kept recurring in many of the phase determinations, hence it seemed likely that the symbol $a$ had the same sign as $c g$. Other relationships occurred also, so that after 150 phases were de-

[^0]termined as functions of $a, b, c, d, g$ and $h$, it was obvious that the symbols had the following values:
\[

$$
\begin{aligned}
& a \equiv+ \\
& b \equiv b \\
& c \equiv c \\
& d \equiv b c \\
& g \equiv c \\
& h \equiv+.
\end{aligned}
$$
\]

Only two letters remained as unknowns. If both $b$ and $c$ were positive, then all phases would be positive; therefore this combination was eliminated. For the remaining three possibilities for $b$ and $c,(+-),(--)$ and $(-+)$, the number of known phases was rapidly expanded to 468 (all $|E|>1.5$ ) by the use of a computer program and three three-dimensional $E$-maps were computed. $E$-maps are Fourier maps in which $E$ values rather than $F$ values are used as the coefficients (Karle, Hauptman, Karle \& Wing, 1958). The advantage of using $E$-maps is that the atoms are represented as essentially point atoms. Since many of the reflections with large $|E|$ values have relatively high indices, the resolution of an $E$-map is very good. Upon examination of three $E$-maps computed, it was immediately obvious that the one with $b+$ and $c$ - was the correct one. It is illustrated on the left-hand side of Fig. 1.

## The refinement

The coordinates of the twenty-eight atoms as read from the $E$-map in Fig. 1 were subjected to a least-squares refinement with the ORFLS program (Busing, Martin \& Levy, 1962) which was adapted in our laboratory to the IBM 7030 (STRETCH). The quantity minimized was $\Sigma w\left(F_{o}-F_{c}\right)^{2}$ with the weighting function equal to unity for all reflections with $\left|F_{o}\right|>0$. Individual scale factors were used for each level $(h=0 \rightarrow 6)$ since diffraction data were obtained only about the $a$ axis. Several cycles of refinement with isotropic temperature factors brought the $R$ index to $18 \cdot 4 \%$. Two cycles with anisotropic temperature factors reduced $R$ to $10.7 \%$. At this point the refinement was not continued any further. Hydrogen atoms were not included. The fractional coordinates and anisotropic temperature factors are listed in Table 4. Observed and calculated structure factors are listed in Table 5.

## The structure

An electron density map including all the data and computed with $F$ values for the Fourier coefficients is shown on the right-hand side of Fig. 1 for direct comparison with the original $E$-map computed from the


Fig. 1. On the left-hand side, sections through maximum densities of a three-dimensional $E$-map are projected on the (100) plane. The $E$-map was computed from 468 phases determined by the symbolic addition procedure. Contours are at equally spaced, arbitrary levels. Every other contour for the sulfur atoms has been omitted. On the right-hand side is the final electron density map. Contours are at intervals of $2 \mathrm{e} . \AA^{-3}$, starting with the $2 \mathrm{e} . \AA^{-3}$. Every other contour for the sulfur atoms has been omitted.

468 initially determined phases. Another view of the molecule is shown in Fig. 2. Rings I and III are approximately parallel to each other and approximately perpendicular to the SCNNC ring. The constituents attached to $\mathrm{C}(2)$ and $\mathrm{N}(3)$ are trans to each other. Bond distances and angles are listed in Table 6 and displayed in Fig. 3.


Fig. 2. Configuration of 2-p-methoxyphenyl-3,4-dibenzyl-1,3,4-thiadiazolidine-5-thione

(a)

(b)

Fig. 3. Bond distances and angles.

Table 4. Fractional coordinates* for 2-p-methoxyphenyl-3,4-dibenzyl-1,3,4-thiadiazolidine-5-thione
The thermal parameters are of the form $T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. Each thermal parameter is multiplied by $10^{4}$.

| Atom | $x$ | $y$ | $z$ | $\beta_{11}$ | $\beta_{22}$ | $\beta_{33}$ | $\beta_{12}$ | $\beta_{13}$ | $\beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S(1) | $0 \cdot 0540$ | $0 \cdot 5000$ | $0 \cdot 2168$ | 24 | 52 | 55 | -8 | $-20$ | 12 |
| C(2) | $0 \cdot 1503$ | 0.6627 | $0 \cdot 2754$ | 54 | 47 | 39 | 15 | -5 | 14 |
| N(3) | $0 \cdot 3078$ | 0.6740 | $0 \cdot 2015$ | 43 | 42 | 33 | 34 | -1 | 12 |
| N(4) | $0 \cdot 3795$ | 0.5678 | $0 \cdot 1769$ | 35 | 38 | 52 | 26 | $-5$ | 12 |
| C(5) | $0 \cdot 2656$ | 0.4673 | $0 \cdot 1755$ | 43 | 47 | 58 | 3 | -29 | 13 |
| S(6) | 0.3099 | 0.3304 | $0 \cdot 1407$ | 158 | 35 | 99 | 29 | -38 | 10 |
| C(7) | 0.5676 | 0.5821 | $0 \cdot 1709$ | 53 | 67 | 65 | 29 | 1 | 4 |
| C(8) | 0.6439 | 0.6485 | $0 \cdot 2902$ | 49 | 74 | 64 | 30 | -9 | 14 |
| C(9) | 0.6291 | 0.5847 | 0.3670 | 164 | 166 | 98 | 9 | -51 | 58 |
| C(10) | 0.6961 | 0.6453 | $0 \cdot 4816$ | 260 | 270 | 118 | 42 | -83 | 70 |
| C(11) | 0.7783 | 0.7639 | 0.5125 | 202 | 270 | 109 | 135 | -57 | -24 |
| C(12) | 0.7941 | 0.8284 | 0.4365 | 165 | 120 | 174 | 76 | -99 | -52 |
| C(13) | 0.7236 | 0.7691 | 0.3220 | 139 | 77 | 146 | 41 | -63 | -8 |
| C(14) | $0 \cdot 2745$ | 0.6824 | 0.0883 | 145 | 56 | 33 | 45 | -12 | 14 |
| C(15) | $0 \cdot 2120$ | 0.7990 | $0 \cdot 1118$ | 85 | 59 | 31 | 28 | 0 | 19 |
| C(16) | $0 \cdot 3262$ | 0.9094 | $0 \cdot 1602$ | 112 | 55 | 62 | 14 | -24 | 19 |
| C(17) | $0 \cdot 2654$ | 1.0168 | 0.1808 | 178 | 68 | 85 | 31 | -19 | 30 |
| C(18) | 0.0979 | 1.0153 | $0 \cdot 1532$ | 193 | 79 | 95 | 40 | -22 | 43 |
| C(19) | $-0.0180$ | 0.9055 | $0 \cdot 1047$ | 186 | 106 | 95 | 51 | -24 | 53 |
| C(20) | 0.0438 | 0.7967 | $0 \cdot 0834$ | 86 | 86 | 59 | 22 | -20 | 35 |
| C(21) | $0 \cdot 1948$ | 0.7095 | 0.4034 | 47 | 46 | 35 | 11 | -8 | 13 |
| C(22) | $0 \cdot 1590$ | $0 \cdot 6420$ | 0.4736 | 124 | 59 | 47 | -3 | -21 | 26 |
| C(23) | $0 \cdot 1979$ | 0.6936 | 0.5932 | 141 | 78 | 50 | -3 | -25 | 33 |
| C(24) | $0 \cdot 2701$ | 0.8132 | 0.6371 | 112 | 69 | 33 | 15 | $-14$ | 18 |
| C(25) | 0.3131 | 0.8831 | 0.5667 | 228 | 55 | 39 | -5 | -22 | 14 |
| C(26) | $0 \cdot 2729$ | 0.8297 | 0.4497 | 205 | 57 | 43 | 6 | -13 | 23 |
| O(27) | 0.3132 | 0.8747 | 0.7515 | 196 | 91 | 34 | 5 | -32 | 19 |
| C(28) | $0 \cdot 2729$ | $0 \cdot 8074$ | $0 \cdot 8302$ | 213 | 132 | 53 | 14 | -28 | 49 |
| ndard error |  |  |  |  |  |  |  |  |  |
| S | 0.0003 | 0.0001 | $0 \cdot 0001$ | 1 | 1 | 1 | 2 | 2 | 1 |
| C | 0.0011 | $0 \cdot 0006$ | $0 \cdot 0006$ | 7 | 6 | 5 | 9 | 8 | 5 |
| N | 0.0007 | $0 \cdot 0003$ | $0 \cdot 0004$ | 4 | 3 | 3 | 5 | 5 | 2 |
| O | $0 \cdot 0007$ | $0 \cdot 0004$ | $0 \cdot 0003$ | 4 | 4 | 3 | 6 | 5 | 3 |

* Coordinates are so chosen that they may be substituted directly into the equations representing the least-squares planes.

Table 5. Observed and calculated structure factors
The three columns within each group contain the values of $l, 10 F_{0}, 10 F_{c}$. Reflections indicated by an asterisk were given zero weight in the least-squares calculation.


Table 5 (cont.)





























Table 5 (cont.)


Table 6. Bond lengths and angles

| $\quad$ Bond |  |
| :--- | :--- |
| $\mathrm{S}(1)-\mathrm{C}(2)$ | $1.842 \AA$ |
| $\mathrm{C}(2)-\mathrm{N}(3)$ | 1.514 |
| $\mathrm{~N}(3)-\mathrm{N}(4)$ | 1.420 |
| $\mathrm{~N}(4)-\mathrm{C}(5)$ | 1.355 |
| $\mathrm{C}(5)-\mathrm{S}(1)$ | 1.777 |
| $\mathrm{C}(5)-\mathrm{S}(6)$ | 1.650 |
| $\mathrm{~N}(4)-\mathrm{C}(7)$ | 1.437 |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.474 |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.411 |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.397 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.371 |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.408 |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.403 |
| $\mathrm{C}(13)-\mathrm{C}(8)$ | 1.386 |
|  |  |
|  |  |
| $\mathrm{~N}(3)-\mathrm{C}(14)$ | 1.469 |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | 1.499 |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | 1.389 |
| $\mathrm{C}(16)-\mathrm{C}(17)$ | 1.395 |
| $\mathrm{C}(17)-\mathrm{C}(18)$ | 1.347 |


| Angle |  |
| :--- | ---: |
| $\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(2)$ | $89 \cdot 3^{\circ}$ |
| $\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$ | $104 \cdot 1$ |
| $\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{N}(4)$ | $106 \cdot 7$ |
| $\mathrm{~N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$ | $116 \cdot 3$ |
| $\mathrm{~N}(4)-\mathrm{C}(5)-\mathrm{S}(1)$ | $111 \cdot 2$ |
| $\mathrm{~N}(4)-\mathrm{C}(5)-\mathrm{S}(6)$ | $126 \cdot 4$ |
| $\mathrm{~S}(6)-\mathrm{C}(5)-\mathrm{S}(1)$ | $122 \cdot 4$ |
| $\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(7)$ | $126 \cdot 8$ |
| $\mathrm{~N}(3)-\mathrm{N}(4)-\mathrm{C}(7)$ | $116 \cdot 4$ |
| $\mathrm{~N}(4)-\mathrm{C}(7)-\mathrm{C}(8)$ | $107 \cdot 9$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $117 \cdot 3$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$ | $119 \cdot 3$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $119 \cdot 0$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $117 \cdot 6$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $123 \cdot 8$ |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $119 \cdot 0$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$ | $117 \cdot 2$ |
| $\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$ | $123 \cdot 3$ |
| $\mathrm{~N}(4)-\mathrm{N}(3)-\mathrm{C}(14)$ | $106 \cdot 2$ |
| $\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$ | $117 \cdot 0$ |
| $\mathrm{~N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$ | $107 \cdot 5$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ | $120 \cdot 6$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$ | $119 \cdot 7$ |


| Bond |  | Angle |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(18)-\mathrm{C}(19)$ | $1 \cdot 391$ | $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$ | 119.7 |
| C(19)-C(20) | 1.413 | $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$ | 121.0 |
| $\mathrm{C}(20)-\mathrm{C}(15)$ | $1 \cdot 352$ | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | 119.9 |
|  |  | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$ | 119.0 |
|  |  | $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$ | $120 \cdot 7$ |
|  |  | $\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$ | 119.6 |
| $\mathrm{C}(2)-\mathrm{C}(21)$ | 1.496 | S(1)-C(2)-C(21) | 112.9 |
| $\mathrm{C}(21)-\mathrm{C}(22)$ | 1.378 | $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{C}(21)$ | $113 \cdot 8$ |
| $\mathrm{C}(22)-\mathrm{C}(23)$ | 1.392 | $\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(22)$ | 124.7 |
| C(23)-C(24) | 1.357 | $\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{C}(26)$ | 114.7 |
| C(24)-C(25) | 1.409 | $\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$ | 121-3 |
| C(25)-C(26) | 1.367 | $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $116 \cdot 9$ |
| C(26)-C(21) | 1.374 | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$ | $122 \cdot 9$ |
| $\mathrm{C}(24)-\mathrm{O}(27)$ | 1.350 | $\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$ | 118.7 |
| $\mathrm{O}(27)-\mathrm{C}(28)$ | 1.468 | C(25)-C(26)-C(21) | 119.6 |
|  |  | $\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$ | $120 \cdot 6$ |
|  |  | $\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(27)$ | $123 \cdot 0$ |
|  |  | $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{O}(27)$ | 114.1 |
|  |  | $\mathrm{C}(24)-\mathrm{O}(27)-\mathrm{C}(28)$ | 117.1 |

The standard deviations for the bond lengths range from 0.007 to $0.010 \AA$ and the standard deviations for the angles range from $0.4^{\circ}$ to $0.9^{\circ}$.

Table 6 (cont.)

The SCNNC ring is of particular interest in this investigation. The atoms $S(1), N(3), N(4)$ and $C(5)$ lie within $0.02 \AA$ of a plane whose equation is

$$
\begin{equation*}
1.8422 x-1.8020 y+11.641 z=1.7113 \tag{5}
\end{equation*}
$$

referred to the triclinic axes and where the quantity on the right hand side of the equation is the origin-to-plane distance in $\AA$. Atom $\mathrm{C}(2)$, however, is $0.58 \AA$ out of the plane. The puckering of the ring is similar to that found in saturated five-membered rings composed of all carbon atoms. The two adjacent nitrogen atoms in the ring are quite different from each other. The bonds to $\mathrm{N}(3)$ form tetrahedral angles whereas the bonds to $\mathrm{N}(4)$ lie in a plane. Furthermore, the bond distance $\mathrm{C}(2)-\mathrm{N}(3)$ is $1.51 \AA$, a value near that found in saturated compounds while the $C(5)-N(4)$ distance is much shorter, $1.35 \AA$. The latter value for $\mathrm{C}-\mathrm{N}$ is characteristically found in compounds where $\mathrm{C}-\mathrm{N}$ is adjacent to $\mathrm{C}=\mathrm{S}$ as in thiourea (Kuncher \& Truter, 1958) and its derivatives (Dias \& Truter, 1964). Apparently the presence of the $C=S$ has a profound effect not only on the neighboring nitrogen atom, $\mathrm{N}(4)$, but also on the neighboring sulfur atom, $\mathrm{S}(1)$. The two $\mathrm{C}-\mathrm{S}$ distances in the ring are also considerably different from each other, 1.78 and $1.84 \AA$, with the lower value adjacent to the $\mathrm{C}=\mathrm{S}$. The $\mathrm{C}=\mathrm{S}$ distance, $1.65 \AA$, is somewhat shorter than that found in thiourea derivatives, $1.72 \AA$ (Dias \& Truter, 1964).

The usual values have been obtained for the bond distances and angles in the benzyl and methoxyphenyl substituents. The equations for the least-squares planes through rings I, II, and III are, respectively,

$$
\begin{align*}
7.2663 x-4.3274 y-2.1285 z & =1.2524  \tag{6}\\
-1.8937 x-3.3007 y+11.835 z & =0.1323  \tag{7}\\
\text { and } \quad 7.4924 x-4.6072 y-0.3992 z & =-1.9598, \tag{8}
\end{align*}
$$

where the $x, y$ and $z$ values refer to coordinates in the triclinic system.
The thermal motion of the atoms in ring $I$ is considerably greater than that of atoms in the other rings. The thermal parameters increase for atoms $\mathrm{C}(9), \mathrm{C}(10)$, $\mathrm{C}(11), \mathrm{C}(12)$ and $\mathrm{C}(13)$ as their distance from $\mathrm{C}(8)$ increases. The electron density map (Fig. 1) shows the effect of the thermal motion on these atoms.
The nearest intermolecular approaches are $\mathrm{O}(27)-$ $\mathrm{C}\left(7^{\prime}\right)$ at $3 \cdot 30 \AA, \mathrm{O}(27)-\mathrm{C}\left(18^{\prime}\right)$ at $3.66 \AA, \mathrm{C}(28)-\mathrm{C}\left(20^{\prime \prime}\right)$ at $3 \cdot 59 \AA$, and $\mathrm{S}(6)-\mathrm{C}\left(20^{\prime \prime \prime}\right)$ at $3 \cdot 62 \AA$.
We wish to express our appreciation to Mr Stephen Brenner, who performed all the high-speed machine calculations.

## References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
Dias, H. W. \& Truter, M. R. (1964). Acta Cryst. 17, 937. Grashey, R., Huisgen, R., Sun, K. K. \& Moriarty, R. M. (1965). J. Org. Chem. In the press.

Huisgen, R. (1963). Angew. Chem. Internat. Edit. 2, 565.
Karle, i. l., Hauptman, h., Karle, J. \& Wing, A. B. (1958). Acta Cryst. 11, 257.

Karle, I. L. \& Karle, J. (1963). Acta Cryst. 16, 969.
Karle, I. L., Karle, J. \& Moriarty, R. M. (1964). Tetrahedron Letters. 3579.
Kunchur, N. R. \& Truter, M. R. (1958). J. Chem. Soc., p. 2551.

# Calculation of Exact Transmission Factors for Crystals with Constant Cross-Section 

By A. Braibanti and A.Tiripicchio<br>Istituto di Chimica generale, Università di Parma, Italy

(Received 1 May 1964 and in revised form 14 October 1964)


#### Abstract

Formulae for the calculation of exact transmission factors are derived by the block-mosaic method. The solutions of the integral for a cross-section are presented in a form which relates the area $a_{q r}$ of a block to the paths of the X-rays diffracted at the corners of the $a_{g r}$. The use of the formulae is simplified if the $a_{q \text { ' }}$ 's are divided into triangles and parallelograms. The formulae are suitable for application to automatic computers.


## Introduction

The intensities of the reflexions in X-ray diffraction patterns are affected by absorption. An exact evaluation of the absorption factor (or of the transmission factor) is needed to obtain good accuracy in structure determinations (Jeffery \& Rose, 1964).

The transmission factor is usually defined as

$$
\begin{equation*}
A=\frac{1}{\tau} \int_{\tau} \exp (-\mu l) d \tau \tag{1}
\end{equation*}
$$

in which $l$ represents the length in cm of X-ray path in the crystal, $\mu$ is the absorption coefficient in $\mathrm{cm}^{-1}$ and $\tau$ can be either an area or a volume. The integral,


[^0]:    * To facilitate the application of $\Sigma_{2}$, a computer program has been prepared to list the sets of interacting pairs of each $h k l$ arranged in order of decreasing $|E|$ values.

